The Other Side of the Number Line~ Negative Integers

Integers - are the set of whole numbers and their opposites

4 and $\mathbf{- 4}$ are opposites
Think of the symbol (+ or -) on an integer as a direction sign. Zero is the on-ramp. LEFT from zero is negative and RIGHT from zero is positive.

Absolute Value - is the distance an integer is away from zero on a number line.
Distance is always POSITIVE! You can never travel a negative distance!

$|5|$ (Absolute value of 5) is 5 spaces away from $0=5$

$$
|5|=|-5|
$$

$|-5|$ (Absolute value of -5) is 5 spaces away from $0=5$

Using the Number Line to Add Integers

$(-)$ is wrong so you move LEFT	$(+)$ is RIGHT so you move that way			
$4+(-5)=$	$4+5=$			
$+4+(-5)=$ pos. $4+$ neg. 5				
Start at the 4 and move to the LEFT 5				
spaces.				
$4+(-5)=-1$	$+4+(+5)=$ both integers are positive			
Start at the 4 and move to the RIGHT 5				
spaces.				
$4+5=9$		$	$	$-3+(-6)=$ both integers are negative
:---				
Start at the 3 and move to the LEFT 6 spaces. $3+(-6)=-3$				
Start at the -3 and move to the LEFT 6 spaces. $-6+4=$ neg. $6+$ pos. 4 Start at the -6 and move RIGHT 4 spaces $-6+4=-2$				

Using Rules to Add Integers

1 When the signs are the same, add the integers and keep the same sign
2 When the signs are difference, subtract the integers and keep the sign of the integer farther from zero (absolute
 value)

Following Rule 1	Following Rule 2
$5+7=$ Both integers are positive so we ADD the integers and keep the answer positive $5+7=12$	$5+(-3)=$ Both integers have different signs, (the 5 is positive and the 3 is negative) so we SUBTRACT the integers and keep the sign of the 5 (positive) because it's further from zero than the three $\begin{aligned} & 5-3=2 \\ & 5+(-3)=2 \end{aligned}$
$-5+-7=$ Both integers are positive so we ADD the integers and keep the answer negative $-5+-7=-12$	$-5+3=$ Both integers have different signs, (the 5 is negative and the 3 is positive) so we SUBTRACT the integers and keep the sign of the 5 (negative) because it's further from zero than the three $\begin{aligned} & 5-3=2 \\ & -5+3=-2 \end{aligned}$

Two Wrongs DO make a Right \& One Wrong takes you LEFT When you have two negatives beside each other, they merge to make a positive/plus sign (+)

Two Wrongs into a Right

$3-(-4)=3$ minus a negative 4 (two negatives!)
two negatives $=$ a positive/plus sign
$3+4=$
$3+4=7$
$5-(-6)=5$ minus a negative 6
Two negatives = positive/plus
$5+6=$
$5+6=11$
$-7-(-4)=$
$-7+4=$
Start at -7 and move RIGHT 4 spaces
$-7+4=-3$

Using Rules to Subtract Integers

When subtracting integers remember the phrase: "Keep it, Change it, Flip it" and follow the same rules for Adding Integers

Follow the ONLY Rule	
$4-5=$	$8-(-3)=$
Keep it, Change it, Flip it	$8+(+3)=$
$4+(-5)=$	Add the same sign integers, keep the sign the Subtract the integers and keep the sign of the number farther from zero $5-4=1$ $4+(-5)=-1$
	$8+3=11$
$-3-(-9)=$	$-2-7=$
Keep it, Change it, Flip it	$-2+(-7)=$
$-3+(+9)=$	Add the same sign integers, keep the sign the
Subtract the integers and keep the sign of	
the number farther from zero	$2+7=9$
$9-3=6$	$-2+(-7)=-9$
$-3+9=6$	

Multiplying \& Dividing Integers ~ 2 Simple Rules

$$
\begin{array}{lr}
\text { Don't you see a pattern? } \\
3 \times 2=6 & 2 \times-3=-6 \\
3 \times 1=3 & 1 \times-3=-3 \\
3 \times 0=0 & 0 \times-3=0 \\
3 \times-1=-3 & -1 \times-3=+3 \\
3 \times-2=-6 & -2 \times-3=+6
\end{array}
$$

Instead of trying to find patterns, use these 2 simple rules:
1 When the signs are the same you multiply or divide and keep the sign POSITIVE
2 When the signs are different you multiply or divide and keep the sign NEGEATIVE

Use Rule Number 1	Use Rule Number 2
$4 \times 5=$ both positive integers, multiply and	$6 \times-7=$ integers are different, multiply and
keep answer positive	keep sign negative
$4 \times 5=20$	$6 \times 7=42$
$4 \times 5=+20$	$6 \times-7=-42$
$-3 \times-8=$ both negative integers, multiply and	$-12 \div 3=$ integers are different, divide and
keep answer negative	keep sign negative
$3 \times 8=24$	$12 \div 3=4$
$-3 \times-8=+24$	$-12 \div 3=-4$
$28 \div 7=$ both positive, divide and keep	$32 \div-4=$ integers are different, divide and
positive	keep sign negative
$28 \div 7=4$	$32 \div 4=8$
$28 \div 7=+4$	$32 \div-4=-8$

